Entrar

Projeto: Animações Lineares: A Aventura Gráfica das Funções de Primeiro Grau

Matemática

Original Teachy

'EM13MAT302'

Função do primeiro grau: gráfico e tabela

Contextualização

A função do primeiro grau é um dos elementos fundamentais do estudo da Matemática. Ela está em tudo que envolve progressão e incremento constante. Cada vez que você salva dinheiro, por exemplo, está aplicando a lógica da função do primeiro grau. Esse é um dos motivos pelos quais essa é uma das primeiras funções que aprendemos quando estudamos álgebra. Em resumo, uma função do primeiro grau segue um padrão linear, o que significa que ela progride a uma taxa constante.

O gráfico da função do primeiro grau é uma reta inclinada no plano cartesiano, o que oferece uma representação gráfica dessa progressão constante. Isso torna as funções do primeiro grau e seus gráficos ferramentas valiosas não apenas na matemática, mas também em várias disciplinas e campos de estudo, incluindo física, economia, engenharia, entre outros.

Compreender a construção e interpretação desse gráfico é uma habilidade essencial para qualquer pessoa que queira entender como as coisas progredem ao longo do tempo em uma taxa constante. Para além disso, essa função se manifesta em muitos dos fenômenos que observamos em nosso cotidiano, desde o crescimento da população, à economia, passando até pelo comportamento do clima.

Introdução

Em álgebra, uma função do primeiro grau é uma expressão polinomial de grau 1. Geralmente, uma função do primeiro grau é escrita na forma y = mx + b, onde m e b são constantes. O coeficiente m é chamado de coeficiente angular, que determina a inclinação da linha no gráfico, e b é chamado de coeficiente linear, que dá o ponto em que a linha intercepta o eixo y.

Essa apresentação gráfica é uma das formas mais visuais de entender o conceito de funções do primeiro grau e seu comportamento. Mais ainda, o gráfico permite vislumbrar as possíveis raízes da função, isto é, os valores que fazem y ser igual a zero. Além disso, o gráfico também nos mostra claramente o comportamento crescente ou decrescente da função.

Para que tenham uma base sólida sobre o tema, sugiro as seguintes fontes confiáveis:

Atividade prática

Título da atividade:

"Construindo Gráficos - uma jornada no mundo das Funções de Primeiro Grau"

Objetivo do projeto:

Compreender o conceito e aplicação de funções de primeiro grau e suas representações gráficas, enquanto desenvolvem habilidades de colaboração, comunicação e pensamento crítico.

Descrição detalhada do projeto:

Neste projeto, os alunos serão desafiados a criar uma animação que mostre o comportamento de várias funções do primeiro grau, suas representações gráficas e as consequências de variar seus coeficientes lineares e angulares.

Cada grupo deve escolher um fenômeno do mundo real que seja modelado por uma função de primeiro grau, por exemplo, o faturamento de uma limonada em função do número de limonadas vendidas, a velocidade de um veículo em função do tempo, entre outros. Cada fenômeno escolhido será a base para a animação.

Esta atividade requer que os alunos investiguem a fundo sobre funções de primeiro grau: definição, propriedades, aplicações e interpretação de gráficos. Além disso, eles precisarão também aprender sobre o uso de algumas ferramentas tecnológicas para a produção da animação.

Materiais necessários:

  • Computadores com acesso à internet
  • Software de desenho gráfico (como Paint, Adobe Illustrator) ou software de animação (como Blender, Adobe Animate)
  • Lápis, papel, régua, calculadora para os cálculos iniciais
  • Livros, vídeos e páginas da web sobre Função do Primeiro Grau

Passo a passo detalhado para a realização da atividade:

  1. Depois de formar grupos de 3 a 5 alunos, cada equipe deve escolher um fenômeno do mundo real que seja representado por uma função de primeiro grau.

  2. Cada grupo deve pesquisar e estudar sobre a função do primeiro grau, sua definição, propriedades, aplicações e como interpretar seus gráficos.

  3. Com o fenômeno em mãos, os estudantes devem criar uma equação do primeiro grau que modele a situação escolhida.

  4. Os alunos devem produzir vários gráficos da função criada, mostrando o efeito de modificar os coeficientes lineares e angulares. Devem analisar a inclinação da reta, pontos de intersecção, entre outros aspectos.

  5. Após o estudo e a criação dos gráficos, os alunos devem elaborar um roteiro para a animação, que mostre a variação dos coeficientes e seu resultado no gráfico.

  6. Usando o software escolhido, os alunos devem criar a animação baseada no roteiro. A animação deve mostrar a relação entre a função do primeiro grau e o fenômeno escolhido.

  7. Os estudantes devem preparar uma apresentação da animação para a turma, explicando a função do primeiro grau, o fenômeno escolhido e como esse fenômeno é representado pela função e pelo gráfico.

  8. Finalmente, os alunos devem redigir um relatório detalhado do projeto. O documento deve conter:

    • Introdução: contextualização da função do primeiro grau e sua importância, o fenômeno escolhido e o objetivo do projeto.

    • Desenvolvimento: Discussão aprofundada da teoria por trás da função do primeiro grau, descrição detalhada da atividade, metodologia utilizada e resultados obtidos.

    • Conclusão: Retornar aos pontos principais, discutir as conclusões retiradas do projeto e os aprendizados obtidos.

    • Bibliografia: Referências das fontes de informação utilizadas.

O tempo estimado para a realização do projeto é de aproximadamente 15 a 20 horas, podendo variar de acordo com a complexidade da animação e o nível de detalhe do relatório.

Comentários mais recentes
Nenhum comentário ainda. Seja o primeiro a comentar!
Iara Tip

DICA DA IARA

Precisa de materiais para apresentar o tema do projeto em sala?

Na plataforma da Teachy você encontra uma série de materiais prontos sobre esse tema! Jogos, slides, atividades, vídeos, planos de aula e muito mais...

Quem viu esse projeto também gostou de...

Community img

Faça parte de uma comunidade de professores direto no seu WhatsApp

Conecte-se com outros professores, receba e compartilhe materiais, dicas, treinamentos, e muito mais!

2025 - Todos os direitos reservados

Termos de usoAviso de PrivacidadeAviso de Cookies