Entrar

Projeto: Rotações de Figuras Planas | Metodologia Socioemocional | Projeto

Matemática

Original Teachy

'EF07MA21'

Rotações de Figuras Planas

Objetivos

- Reconhecer e obter figuras obtidas por simetrias de rotação.

- Compreender como rotacionar um triângulo em 90º, 180º e 270º.

- Desenvolver a habilidade de visualizar transformações geométricas.

- Aplicar o método RULER para reconhecer e regular emoções durante o aprendizado.

Curiosidades

1.  Você sabia que a rotação de figuras é uma técnica fundamental em design gráfico e animação? É assim que muitos dos seus desenhos animados favoritos ganham vida!

2.  Rotações são usadas na arquitetura para criar padrões fascinantes em pisos e tetos. Prédios famosos como o Taj Mahal utilizam simetrias de rotação em seus mosaicos!

3.  Em esportes como futebol e basquete, a rotação da bola é crucial para realizar jogadas precisas e surpreendentes. A física por trás disso é pura geometria!

Contextualização

Você já parou para pensar como seria o mundo sem a rotação de figuras? Imagine um caleidoscópio que não gira, ou uma roda que não roda. A rotação está presente em muitos aspectos do nosso dia a dia, desde a arte até a engenharia. Ela nos permite ver o mundo sob diferentes ângulos e encontrar novas maneiras de resolver problemas.

Na matemática, a rotação é uma transformação que gira uma figura em torno de um ponto fixo, chamado de centro de rotação. Esse conceito é importante porque nos ajuda a entender como objetos se movem e mudam de posição no espaço. É como se estivéssemos girando uma chave na fechadura - o movimento é preciso e tem um propósito claro.

Além disso, a rotação de figuras planas exige concentração e precisão, habilidades valiosas em qualquer área do conhecimento. Quando aprendemos a rotacionar figuras, também estamos desenvolvendo nossa capacidade de focar e nos manter calmos sob pressão. Isso nos torna não apenas melhores em matemática, mas também mais preparados para enfrentar desafios na vida cotidiana.

Atividade 1: Transformações Rotacionais: Criando uma Arte Geométrica!

Descrição

Olá, jovens matemáticos!  Hoje, vamos embarcar em uma jornada incrível onde a matemática e a arte se encontram. Sua missão é criar uma obra de arte geométrica usando rotações de figuras planas. Vamos usar triângulos e outros polígonos para criar um padrão único e colorido. Durante essa atividade, você vai aprender na prática como as rotações funcionam e como podem ser usadas para criar designs fascinantes. Pronto para se divertir e aprender algo novo? Então, vamos começar!

Materiais Necessários

- Folhas de papel quadriculado

- Conjunto de triângulos desenhados (que você pode desenhar à mão ou imprimir)

- Lápis

- Borracha

- Régua

- Canetas coloridas ou lápis de cor

- Tesoura (se necessário)

- Cola (se necessário)

- Material para anotação (papel e caneta ou lápis)

Passo a Passo

  1. Comece desenhando ou recortando vários triângulos e outros polígonos em uma folha separada. Certifique-se de que todos os lados e ângulos estão corretos.
  2. Escolha um ponto central em sua folha de papel quadriculado. Esse será o centro de rotação para todas as suas figuras.
  3. Posicione o primeiro triângulo no papel quadriculado. Use a régua para medir a distância do centro até cada vértice do triângulo.
  4. Rotacione o triângulo 90º no sentido horário em torno do ponto central. Marque os novos vértices e desenhe a nova posição do triângulo.
  5. Repita o processo de rotação com ângulos de 180º e 270º, sempre usando o mesmo ponto central. Desenhe as novas posições das figuras.
  6. Agora, adicione mais figuras (triângulos e outros polígonos) e repita o processo de rotação para cada uma delas. Experimente diferentes combinações e padrões.
  7. Após completar todas as rotações, use canetas coloridas ou lápis de cor para colorir suas figuras. Destaque os padrões que você criou com as rotações.
  8. Escreva uma breve explicação (1-2 parágrafos) sobre como você realizou as rotações e como se sentiu durante a atividade. Use o método RULER para refletir sobre suas emoções.
  9. Revise seu trabalho para garantir que todas as rotações estão corretas e que sua explicação está clara e bem escrita.
  10. Entregue sua obra de arte geométrica e a explicação escrita conforme as instruções do professor. Boa sorte e divirta-se!

O Que Você Deve Entregar?

Seu entregável será uma obra de arte geométrica composta por várias figuras rotacionadas em diferentes ângulos (90º, 180º e 270º). Você deve montar essa arte em uma folha de papel quadriculado e colorir as figuras para destacar os padrões criados. Além disso, anexe uma breve explicação escrita (de 1 a 2 parágrafos) sobre o processo de rotação que você usou e como se sentiu durante a atividade, aplicando o método RULER. Capriche na apresentação, use toda a sua criatividade e deixe sua obra de arte brilhante!

Atividade 2: Desvendando Padrões com Rotações: O Desafio do Labirinto!

Descrição

Olá, exploradores da geometria!  Nesta atividade, você vai criar um labirinto geométrico utilizando rotações de figuras planas. Seu desafio será desenhar um labirinto onde o caminho correto é indicado por figuras rotacionadas em diferentes ângulos (90º, 180º e 270º). Além de exercitar suas habilidades em rotação, você também vai desenvolver sua criatividade e lógica ao criar um percurso desafiador. Pronto para embarcar nessa aventura e desvendar os mistérios do labirinto? Vamos lá!

Materiais Necessários

- Folhas de papel quadriculado

- Lápis

- Borracha

- Régua

- Canetas coloridas ou lápis de cor

- Material para anotação (papel e caneta ou lápis)

- Opcional: Tesoura e cola

Passo a Passo

  1. Comece desenhando um esboço do labirinto em uma folha de rascunho. Imagine o percurso que deseja criar e onde colocará as figuras rotacionadas para indicar o caminho correto.
  2. Transfira o esboço para uma folha de papel quadriculado, desenhando as paredes do labirinto com precisão. Utilize a régua para garantir que todas as linhas estão retas.
  3. Escolha os locais onde você vai posicionar as figuras geométricas. Essas figuras devem ser usadas para indicar o caminho correto através do labirinto.
  4. Desenhe os triângulos e outros polígonos nos pontos escolhidos. Certifique-se de que todas as figuras estão desenhadas corretamente, com lados e ângulos precisos.
  5. Rotacione cada figura em torno de um ponto central. Comece com rotações de 90º no sentido horário. Marque os novos vértices e desenhe a nova posição das figuras.
  6. Repita o processo de rotação com ângulos de 180º e 270º, sempre utilizando o mesmo ponto central para cada figura.
  7. Revise o labirinto para garantir que todas as rotações estão corretas e que o percurso está bem definido. Certifique-se de que o caminho correto é indicado pelas figuras rotacionadas.
  8. Use canetas coloridas ou lápis de cor para destacar as figuras rotacionadas e as paredes do labirinto. Adicione detalhes e cores para tornar o labirinto visualmente atraente.
  9. Escreva uma breve explicação (1-2 parágrafos) sobre como você criou o labirinto e como se sentiu durante a atividade. Utilize o método RULER para refletir sobre suas emoções.
  10. Revise seu trabalho para garantir que tanto o labirinto quanto a explicação estão claros e bem apresentados.
  11. Entregue seu labirinto geométrico e a explicação escrita conforme as instruções do professor. Boa sorte e divirta-se!

O Que Você Deve Entregar?

Seu entregável será um labirinto geométrico desenhado em uma folha de papel quadriculado, onde o caminho correto é indicado por figuras rotacionadas em ângulos específicos (90º, 180º e 270º). Adicionalmente, você deve escrever uma breve explicação (1-2 parágrafos) sobre o processo de criação do labirinto e as emoções que sentiu durante a atividade, aplicando o método RULER. Capriche na apresentação e na criatividade do seu labirinto!

Atividade 3: A Magia das Rotações: Construindo um Móbile Geométrico!

Descrição

Olá, futuros engenheiros e artistas!  Nesta atividade, você vai explorar o fascinante mundo das rotações construindo um móbile geométrico. Um móbile é uma estrutura suspensa que se movimenta com o vento ou com toques leves, e nosso objetivo é criar um móbile que exiba figuras geométricas rotacionadas em diferentes ângulos. Será uma oportunidade incrível para aplicar seus conhecimentos sobre rotação de figuras planas enquanto cria uma peça decorativa única. Pronto para deixar sua criatividade voar? Vamos nessa!

Materiais Necessários

- Folhas de papel colorido ou papel comum para desenhar e colorir

- Lápis

- Borracha

- Régua

- Tesoura

- Fio ou barbante

- Palitos de churrasco ou canudos

- Fita adesiva ou cola

- Material para anotação (papel e caneta ou lápis)

Passo a Passo

  1. Comece desenhando vários triângulos e outros polígonos (quadrados, hexágonos, etc.) em uma folha de papel. Cada figura deve ser desenhada várias vezes para permitir as rotações.
  2. Recorte todas as figuras desenhadas com cuidado. Use a tesoura para garantir cortes precisos.
  3. Escolha um ponto central para cada figura e rotacione-as em ângulos de 90º, 180º e 270º. Desenhe as novas posições das figuras em outras folhas de papel.
  4. Recorte as figuras rotacionadas, garantindo que cada conjunto de figuras (original e rotacionadas) esteja completo.
  5. Use fita adesiva ou cola para prender um pedaço de fio ou barbante em cada figura. Certifique-se de que o fio tenha comprimento suficiente para permitir que a figura fique suspensa.
  6. Prenda as extremidades dos fios em palitos de churrasco ou canudos, criando várias camadas de figuras em rotação. Experimente diferentes disposições para criar um visual harmonioso.
  7. Conecte os palitos ou canudos uns aos outros usando fio ou barbante, formando a estrutura do móbile. Certifique-se de que todas as figuras possam se mover livremente.
  8. Pendure seu móbile em um lugar onde possa se movimentar com o vento ou com toques leves. Observe como as figuras rotacionadas criam padrões interessantes quando se movem.
  9. Escreva uma breve explicação (1-2 parágrafos) sobre o processo de criação do móbile e como se sentiu durante a atividade. Utilize o método RULER para refletir sobre suas emoções.
  10. Revise seu trabalho para garantir que todas as rotações estão corretas e que sua explicação está clara e bem escrita.
  11. Entregue seu móbile geométrico e a explicação escrita conforme as instruções do professor. Boa sorte e divirta-se!

O Que Você Deve Entregar?

Seu entregável será um móbile geométrico composto por várias figuras rotacionadas em diferentes ângulos (90º, 180º e 270º). Você deve montar esse móbile utilizando fios, palitos de churrasco ou canudos, e garantir que todas as figuras possam se mover livremente. Além disso, anexe uma breve explicação escrita (de 1 a 2 parágrafos) sobre o processo de criação do móbile e como se sentiu durante a atividade, aplicando o método RULER. Capriche na apresentação, use toda a sua criatividade e deixe seu móbile brilhante!

Comentários mais recentes
Nenhum comentário ainda. Seja o primeiro a comentar!
Iara Tip

DICA DA IARA

Precisa de materiais para apresentar o tema do projeto em sala?

Na plataforma da Teachy você encontra uma série de materiais prontos sobre esse tema! Jogos, slides, atividades, vídeos, planos de aula e muito mais...

Quem viu esse projeto também gostou de...

Community img

Faça parte de uma comunidade de professores direto no seu WhatsApp

Conecte-se com outros professores, receba e compartilhe materiais, dicas, treinamentos, e muito mais!

2025 - Todos os direitos reservados

Termos de usoAviso de PrivacidadeAviso de Cookies